Ana Valdivia (Barcelona, 1990) es profesora e investigadora en Inteligencia Artificial, Gobierno y Políticas en el Oxford Internet Institute de la Universidad de Oxford. Matemática e informática, ha estudiado la influencia en las sociedades de la recopilación masiva de datos o el uso de algoritmos en las fronteras. Actualmente su trabajo se centra en los impactos medioambientales y sociales de la inteligencia artificial. Colabora con organizaciones como AlgoRace, que analiza los usos de la IA desde una perspectiva antirracista, y escribe en el blog La paradoja de Jevons. Atiende a CTXT por videoconferencia.

Ya que es usted matemática e informática, me gustaría pedirle en primer lugar que nos explique qué es eso que llamamos inteligencia artificial y hasta dónde puede llegar, porque claro, tenemos a los señores de OpenAI hablando de riesgos catastróficos para la humanidad…

Pues a ver, ¿qué es la inteligencia artificial? A mí me gusta mucho la definición que está reflejada en la nueva Ley de Inteligencia Artificial de la Unión Europea. Explica que es un conjunto de hardware y software en el que un algoritmo se programa con un objetivo y llega a alcanzar ese objetivo de la manera más eficiente, algorítmicamente hablando, con datos.

O sea, básicamente es un algoritmo que se programa en un ordenador, o en un servidor, y que alcanza un objetivo aprendiendo de los datos que le han sido dados. No es algo nuevo. El concepto de inteligencia artificial se acuñó en 1956 en Estados Unidos, lo que pasa es que en aquella época la capacidad computacional de los ordenadores no era la que tenemos ahora, ni las sociedades estaban tan “datificadas”: hoy en día se recogen muchos más datos que en 1956. Entonces, se ha producido una explosión de esta tecnología porque hay ordenadores más potentes y hay datos con los que entrenar esos algoritmos en esos ordenadores potentes.

En esta definición de la ley europea también se explica que hay diferentes técnicas en las que se puede basar un algoritmo de inteligencia artificial, que son el aprendizaje automático, el aprendizaje profundo, algoritmos basados en reglas predefinidas o métodos más estadísticos como la heurística. Son conceptos muy técnicos, pero creo que esa definición está muy bien.

¿Hasta dónde puede llegar esta tecnología? Pues eso depende de la sociedad y de las manos en las que caiga. Yo publiqué un escrito en 2020 en el que hablaba sobre los mitos de la inteligencia artificial. Predecía que en los siguientes años los avances de la inteligencia artificial iban a recaer en manos de empresas privadas porque son las que tienen la capacidad de pagar la infraestructura para entrenar algoritmos como ChatGPT. Y es lo que está pasando. Desde las universidades ya nos hemos quedado muy cortas porque no tenemos esa capacidad computacional.

Entrevista completa en CTXT.